
Practical Efficient Microservice Autoscaling
with QoS Assurance

(PEMA)
Md Rajib Hossen1, Mohammad A Islam1, Kishwar Ahmed2
1The University of Texas at Arlington, 2University of South Carolina, Beaufort

Acknowledgement: This work is supported in parts by the NSF under grant number CNS-2104925.

Monolithic vs. Microservice

UI

Logic DB
Access

UIUI

M
ic

ro
se

rv
ic

es

Monolithic
Architecture

Microservices
Architecture

2

Advantages of Microservices
 Easier DevOps management
 Lightweight
 Agile resource management
 Better scaling
 Fault-tolerance
 Platform agnostic compatibility

Presenter Notes
Presentation Notes
What is Microservice? Contrast between MS and monolithic. In this work we focus on resource allocation of MS. More specifically, how can we meet the QoS requirement or SLO with the lowest amount of resources

Challenges in Microservice Management

• Large configuration space.
• Complex communication and inter-dependency
• End-to-end response time depends on multiple services

3

M1
M3

M5

M2

M4

M7

M6

M8

M9

M10
M2r ss r

M3 sr

M4 sr

M1(UI)s r rr s

End-to-End Response Time

r Receive

s Send

Resource Distribution is Critical

• End-to-end response times for the same total resource varies significantly
depending on the resource distribution among micoservices

4

Presenter Notes
Presentation Notes
Challenges in MS – Resource allocation. Details with figure, It is not easy to find what is the problem

“Good” Resource Distribution is Hard to Identify

5

Resource Increased for
highly utilized service

Impact of resource change
on utilization varies

Limitations of Existing Approaches

• Existing cloud managers cannot capture microservice dynamics
• Machine Learning-Based approaches1,2,3

• High-resolution data for offline training
• Intentional SLO violation
• Workload change Requires retraining for system changes

6

Offline Data Train ML Model Deploy Monitor

Retrain

1. Qiu, Haoran, et al. "FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices." OSDI, 2020.
2. Zhang, Yanqi, et al. "Sinan: ML-based and QoS-aware resource management for cloud microservices." ASPLOS, 2021.
3. Hou, Xiaofeng, et al. "AlphaR: learning-powered resource management for irregular, dynamic microservice graph." IPDPS, 2021.

Presenter Notes
Presentation Notes
Problem with ML based solution - needs data, needs to create QoS violation, cannot adapt to changes quickly

Practical Efficient Microservice Autoscaling (PEMA)

• Online and not data intensive
• No intentional QoS violation
• Adaptive to changes

7

Presenter Notes
Presentation Notes
What we want to do in this paper? Problem formulation, Practical and QoS assurance

Feedback-Based Navigation

• Start with “enough” resource to satisfy SLO
• Opportunistic Resource Reduction

• If response time < SLO resource reduction
• Ensures no QoS violation
• Online and not data intensive

8

UIUI

Monitoring

Resource
Manager

Microservice

Presenter Notes
Presentation Notes
We do not try to map resource allocation decision to performance metrics. We develop a system that will find a good resource allocation.

Feedback-Based Navigation

• Gradually reduce resource to push the response time close to SLO
• Monotonic resource reduction

9

0
0.2
0.4
0.6
0.8

1
1.2

1 1.2 1.4 1.6 1.8 2 2.2

N
or

m
al

ize
d

Re
sp

on
se

Normalized Resource

Train Ticket
Hotel Reserve
Sock Shop

Resource Reduction

• How many microservices to reduce the resources from?

𝑛𝑛𝑡𝑡 = N � 𝑅𝑅 − 𝑟𝑟𝑡𝑡−1

𝛼𝛼𝑅𝑅

10

Total Number of
Microservice Scaling

Distance
from SLO

Number of
Microservices for
to cut resource

Presenter Notes
Presentation Notes
How we reduce resource? Equations, But how we avoid bottleneck

Resource Reduction

• How much to reduce?

Δ𝑡𝑡 = 𝛽𝛽 � 𝑅𝑅 − 𝑟𝑟𝑡𝑡−1

𝛼𝛼𝑅𝑅

11

Maximum
Resource

Reduction in
one step

Scaling

Distance
from SLOResource

Reduction

Presenter Notes
Presentation Notes
How we reduce resource? Equations, But how we avoid bottleneck

Problem with Feedback-Based Navigation

• Does not (yet) consider for resource efficiency
• Response time ≅ SLO does not mean no resource reduction opportunities left
• One bottleneck service can push the response close to SLO
• We need microservice-wise augmentation

12

M2r ss r

M3 sr

M4 sr

M1(UI)s r rr s

End-to-End Response Time

r Receive

s Send

M2r ss r

M3 sr

M1(UI)s rrr s

M4 sr

End-to-End Response Time

Bottleneck Identification

• Which metrics reveal a bottleneck service?
• To find out, we create bottlenecks and track the microservice-wise metrics
• We test classification accuracy for different combinations of metrics

13

Collected metrics for each microservice
o CPU Utilizations
o CPU Throttles
o Memory utilization
o service count
o service total
o self min
o self max
o self total
o self avg

Application Name Bottleneck Services Accuracy (%)

Train Ticket

Seat 94.18
Seat, Ticketinfo 96.2

Basic 98.5
Basic, Seat 99.1

Sock Shop
Carts 100

Carts, Orders 98.3

Hotel
Reservation

Front-end 97.8
Front-end, Search 95.6

Presenter Notes
Presentation Notes
Avoiding bottleneck using utilization and throttling

Bottleneck Identification

• CPU throttling rapidly increases after bottleneck
• CPU utilization increases as we move closer to bottleneck
• Bottleneck thresholds vary across services

14

Bottleneck Not a Bottleneck Bottleneck Not a Bottleneck

Presenter Notes
Presentation Notes
Avoiding bottleneck using utilization and throttling

Microservice-Wise Augmentation

• When deciding which microservice to reduce resource from
• Microservices over CPU throttling threshold are filtered out
• Microservices close to their CPU utilization threshold are chosen with a

low probability

𝑝𝑝𝑖𝑖𝑡𝑡 = 1 −
𝑢𝑢𝑖𝑖∗𝑡𝑡−1 − 𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖∈Ι𝑡𝑡(𝑢𝑢𝑖𝑖

∗𝑡𝑡−1)
1 −𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖∈Ι𝑡𝑡(𝑢𝑢𝑖𝑖∗𝑡𝑡−1)

• Runtime update of the bottleneck thresholds

𝑈𝑈𝑖𝑖𝑡𝑡𝑡 = max(𝑈𝑈𝑖𝑖𝑡𝑡𝑡,𝑢𝑢𝑖𝑖𝑡𝑡−1)
𝐻𝐻𝑖𝑖𝑡𝑡𝑡 = max(𝐻𝐻𝑖𝑖𝑡𝑡𝑡,𝐻𝐻𝑖𝑖𝑡𝑡−1)

15

Presenter Notes
Presentation Notes
Avoiding bottleneck using utilization and throttling

Iterative Resource Allocation

• PEMA can cause “unintentional” SLO
violations

• We rollback to a prior allocation
• We keep all past resource

allocations in a “Resource
Allocation History Database
(RHDb)”

• Escape suboptimum
• Randomly roll-back (even w/o

SLO violation) to a past
configuration

16

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

id, resource_alloc_vector, response_time

SLO
violation

RHDb

Random
Rollback

Presenter Notes
Presentation Notes
Stuck in sub optimal? Random exploration, roll back

Practical Efficient Microservice Autoscaling (PEMA)

17

Microservice Implementations

18

Sock Shop

Train Ticket

Hotel Reservation

Convergence

Execution of PEMA in Sock Shop

19

Presenter Notes
Presentation Notes
Result for PEMA – Fig. 11 and 12

Convergence

Execution of PEMA in Train Ticket

20

Execution of PEMA in Hotel Reservation

Presenter Notes
Presentation Notes
Result for PEMA – Fig. 11 and 12

200~400
#1

300~400
#1

200~300
#2

350~400
#1

300~350
#3

250~300
#2

200~250
#4

350~375
#5

375~400
#1

Adapting to Workload Variation

• We divide workloads into ranges (e.g.,200~400200~225, 225~250,…)
• Each workload range has its own resource manager and RHDb
• We bootstrap the resource allocation

21

Presenter Notes
Presentation Notes
What happens when workload changes? Boot-strap PEMA to make it workload-aware

Dynamic SLO Target

• When the workload range is large, lower workloads within a range will
trigger resource reduction

• Solution: Dynamic SLO target

22

Presenter Notes
Presentation Notes
What happens when workload changes? Boot-strap PEMA to make it workload-aware

Dynamic SLO in Execution

23

Presenter Notes
Presentation Notes
Results Fig. 13

Extended Execution

24

Presenter Notes
Presentation Notes
Results – long term execution of Fig. 14

Resource Efficiency

25

Bursty Workloads

26

Presenter Notes
Presentation Notes
Can take workload bursts? Fig. 18

Adaptive to System Changes

27

Presenter Notes
Presentation Notes
Adaptive to change - Fig. 19

Adaptive to SLO Variations

28

Presenter Notes
Presentation Notes
Adaptive to change - Fig. 19

Limitations

• Design limitations
• Lightweight design cannot capture ML-like details
• Randomized exploration cannot guarantee optimality

• Implementation limitations
• Suffers through unintentional SLO violation until next update
• Degree of SLO violation is not considered during rollback
• Does not utilize the past resource allocation history
• Manges only CPU allocations
• Does not explicitly address vertical and horizontal scaling

29

Key Take Away

• PEMA – Practical Efficient Microservice Autoscaling
• Online and not data intensive
• No intentional QoS violation
• Adaptive to changes

30

Thank You!

Presenter Notes
Presentation Notes
Room for improvement

31

Questions?

	Slide Number 1
	Monolithic vs. Microservice
	Challenges in Microservice Management
	Resource Distribution is Critical
	“Good” Resource Distribution is Hard to Identify
	Limitations of Existing Approaches
	Practical Efficient Microservice Autoscaling (PEMA)
	Feedback-Based Navigation
	Feedback-Based Navigation
	Resource Reduction
	Resource Reduction
	Problem with Feedback-Based Navigation
	Bottleneck Identification
	Bottleneck Identification
	Microservice-Wise Augmentation
	Iterative Resource Allocation
	Practical Efficient Microservice Autoscaling (PEMA)
	Microservice Implementations
	Convergence
	Convergence
	Adapting to Workload Variation
	Dynamic SLO Target
	Dynamic SLO in Execution
	Extended Execution
	Resource Efficiency
	Bursty Workloads
	Adaptive to System Changes
	Adaptive to SLO Variations
	Limitations
	Key Take Away
	Slide Number 31

