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Monolithic vs. Microservice
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Advantages of Microservices
 Easier DevOps management
 Lightweight
 Agile resource management
 Better scaling
 Fault-tolerance
 Platform agnostic compatibility

Presenter Notes
Presentation Notes
What is Microservice? Contrast between MS and monolithic. In this work we focus on resource allocation of MS. More specifically, how can we meet the QoS requirement or SLO with the lowest amount of resources



Challenges in Microservice Management

• Large configuration space.
• Complex communication and inter-dependency
• End-to-end response time depends on multiple services
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Resource Distribution is Critical

• End-to-end response times for the same total resource varies significantly 
depending on the resource distribution among micoservices
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Presenter Notes
Presentation Notes
Challenges in MS – Resource allocation. Details with figure, It is not easy to find what is the problem



“Good” Resource Distribution is Hard to Identify
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Limitations of Existing Approaches

• Existing cloud managers cannot capture microservice dynamics 
• Machine Learning-Based approaches1,2,3

• High-resolution data for offline training
• Intentional SLO violation
• Workload change Requires retraining for system changes
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1. Qiu, Haoran, et al. "FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices." OSDI, 2020.
2. Zhang, Yanqi, et al. "Sinan: ML-based and QoS-aware resource management for cloud microservices." ASPLOS, 2021.
3. Hou, Xiaofeng, et al. "AlphaR: learning-powered resource management for irregular, dynamic microservice graph." IPDPS, 2021.

Presenter Notes
Presentation Notes
Problem with ML based solution -  needs data, needs to create QoS violation, cannot adapt to changes quickly



Practical Efficient Microservice Autoscaling (PEMA) 

• Online and not data intensive
• No intentional QoS violation
• Adaptive to changes
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Presenter Notes
Presentation Notes
What we want to do in this paper? Problem formulation, Practical and QoS assurance



Feedback-Based Navigation

• Start with “enough” resource to satisfy SLO
• Opportunistic Resource Reduction

• If response time < SLO  resource reduction
• Ensures no QoS violation
• Online and not data intensive
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Presenter Notes
Presentation Notes
We do not try to map resource allocation decision to performance metrics. We develop a system that will find a good resource allocation.



Feedback-Based Navigation

• Gradually reduce resource to push the response time close to SLO
• Monotonic resource reduction
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Resource Reduction

• How many microservices to reduce the resources from?

𝑛𝑛𝑡𝑡 = N � 𝑅𝑅 − 𝑟𝑟𝑡𝑡−1

𝛼𝛼𝑅𝑅
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Presenter Notes
Presentation Notes
How we reduce resource? Equations, But how we avoid bottleneck



Resource Reduction

• How much to reduce?

Δ𝑡𝑡 = 𝛽𝛽 � 𝑅𝑅 − 𝑟𝑟𝑡𝑡−1

𝛼𝛼𝑅𝑅

11

Maximum 
Resource 

Reduction in 
one step

Scaling

Distance 
from SLOResource 

Reduction

Presenter Notes
Presentation Notes
How we reduce resource? Equations, But how we avoid bottleneck



Problem with Feedback-Based Navigation

• Does not (yet) consider for resource efficiency
• Response time ≅ SLO does not mean no resource reduction opportunities left
• One bottleneck service can push the response close to SLO
• We need microservice-wise augmentation
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Bottleneck Identification 

• Which metrics reveal a bottleneck service?
• To find out, we create bottlenecks and track the microservice-wise metrics
• We test classification accuracy for different combinations of metrics
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Collected metrics for each microservice
o CPU Utilizations
o CPU Throttles
o Memory utilization
o service count
o service total
o self min
o self max
o self total
o self avg

Application Name Bottleneck Services Accuracy (%)

Train Ticket

Seat 94.18
Seat, Ticketinfo 96.2

Basic 98.5
Basic, Seat 99.1

Sock Shop
Carts 100

Carts, Orders 98.3

Hotel 
Reservation

Front-end 97.8
Front-end, Search 95.6

Presenter Notes
Presentation Notes
Avoiding bottleneck using utilization and throttling



Bottleneck Identification

• CPU throttling rapidly increases after bottleneck
• CPU utilization increases as we move closer to bottleneck
• Bottleneck thresholds vary across services 
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Bottleneck Not a Bottleneck Bottleneck Not a Bottleneck

Presenter Notes
Presentation Notes
Avoiding bottleneck using utilization and throttling



Microservice-Wise Augmentation

• When deciding which microservice to reduce resource from
• Microservices over CPU throttling threshold are filtered out
• Microservices close to their CPU utilization threshold are chosen with a 

low probability

𝑝𝑝𝑖𝑖𝑡𝑡 = 1 −
𝑢𝑢𝑖𝑖∗𝑡𝑡−1 − 𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖∈Ι𝑡𝑡(𝑢𝑢𝑖𝑖

∗𝑡𝑡−1)
1 −𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖∈Ι𝑡𝑡(𝑢𝑢𝑖𝑖∗𝑡𝑡−1)

• Runtime update of the bottleneck thresholds

𝑈𝑈𝑖𝑖𝑡𝑡𝑡 = max(𝑈𝑈𝑖𝑖𝑡𝑡𝑡,𝑢𝑢𝑖𝑖𝑡𝑡−1)
𝐻𝐻𝑖𝑖𝑡𝑡𝑡 = max(𝐻𝐻𝑖𝑖𝑡𝑡𝑡,𝐻𝐻𝑖𝑖𝑡𝑡−1)
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Presenter Notes
Presentation Notes
Avoiding bottleneck using utilization and throttling



Iterative Resource Allocation

• PEMA can cause “unintentional” SLO 
violations 

• We rollback to a prior allocation
• We keep all past resource 

allocations in a “Resource 
Allocation History Database 
(RHDb)”

• Escape suboptimum
• Randomly roll-back (even w/o 

SLO violation) to a past 
configuration
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Presenter Notes
Presentation Notes
Stuck in sub optimal? Random exploration, roll back



Practical Efficient Microservice Autoscaling (PEMA) 
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Microservice Implementations
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Convergence 

Execution of PEMA in Sock Shop
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Presenter Notes
Presentation Notes
Result for PEMA – Fig. 11 and 12



Convergence 

Execution of PEMA in Train Ticket
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Execution of PEMA in Hotel Reservation

Presenter Notes
Presentation Notes
Result for PEMA – Fig. 11 and 12
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Adapting to Workload Variation

• We divide workloads into ranges (e.g.,200~400200~225, 225~250,…)
• Each workload range has its own resource manager and RHDb
• We bootstrap the resource allocation 
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Presenter Notes
Presentation Notes
What happens when workload changes? Boot-strap PEMA to make it workload-aware



Dynamic SLO Target

• When the workload range is large, lower workloads within a range will 
trigger resource reduction

• Solution: Dynamic SLO target
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Presenter Notes
Presentation Notes
What happens when workload changes? Boot-strap PEMA to make it workload-aware



Dynamic SLO in Execution
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Presenter Notes
Presentation Notes
Results Fig. 13



Extended Execution
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Presenter Notes
Presentation Notes
Results – long term execution of Fig. 14



Resource Efficiency
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Bursty Workloads
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Presenter Notes
Presentation Notes
Can take workload bursts? Fig. 18



Adaptive to System Changes
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Presenter Notes
Presentation Notes
Adaptive to change -  Fig. 19



Adaptive to SLO Variations
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Presenter Notes
Presentation Notes
Adaptive to change -  Fig. 19



Limitations

• Design limitations
• Lightweight design  cannot capture ML-like details
• Randomized exploration cannot guarantee optimality

• Implementation limitations
• Suffers through unintentional SLO violation until next update
• Degree of SLO violation is not considered during rollback
• Does not utilize the past resource allocation history
• Manges only CPU allocations
• Does not explicitly address vertical and horizontal scaling
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Key Take Away

• PEMA – Practical Efficient Microservice Autoscaling
• Online and not data intensive
• No intentional QoS violation
• Adaptive to changes
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Thank You!

Presenter Notes
Presentation Notes
Room for improvement
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Questions?
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